PHYSICAL REVIEW B

VOLUME 4, NUMBER 1

1 JULY 1971

Theory of Superconductors with Overlapping Bands in the
Presence of Nonmagnetic Impurities. 11

W. S. Chow
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

(Received 10 December 1970)

The transition temperatures of two-band superconductors containing nonmagnetic impurities
are further investigated. It is found that because of interband impurity scattering in an impure
two-band superconductor, the s-band transition temperature T, is identical to the d-band
transition temperature T, . That is, for an impure two-band superconductor, there is only

one transition temperature.
of Hafstrom and MacVicar.

This result is in agreement with the recent experimental findings
Further, it is noted that the perturbing processes due to the in-

terband impurity scattering are similar to the perturbing processes due to the phonon-exchange
interaction between the electrons of the two bands, previously considered by Suhl, Matthias,

and Walker.

I. INTRODUCTION

In a previous paper by the present author! (here-
after referred to as I), the Green’s functions for
two-band superconductors containing nonmagnetic
impurities have been systematically investigated.
Particularly, two limiting cases were separately
studied, namely, (a) the intraband phonon coupling
limit, g,#0, g,#0, but g, =0, and (b) the inter-
band phonon coupling limit, g4 # 0, but gs=g,=0.
As pointed out in Sec. IV of I, for the interband
BCS constant g to be nonvanishing, the radii of
the two Fermi spheres should be identical. Thus,
the interband phonon coupling limit is physically
less interesting. On the other hand, in the intra-
band phonon coupling limit, the radii of the two
Fermi spheres are not required to be identical.
Therefore, this limiting case is relevant to the
actual transition metals, such as niobium, in which
the d-band Fermi surface is known to be larger
than the s-band Fermi surface, although the two
Fermi surfaces are not exactly spherical.

In the present paper, we shall only concentrate
on the intraband phonon coupling limit, g4, =0. As
pointed out in I, even in this limiting case, there
are unsolved problems. In particular, in I, only the
qualitative features of the transition temperatures
were studied. In a pure two-band superconductor,
in the absence of any kind of interband phonon
coupling, there should be two transition tempera-
tures 7. and T2, one corresponding to each of
the two bands. Because of larger density of states
at the d-band Fermi surface, it is expected that
7.9 should be larger than T, and from the point
of view of experimentalists, T;f}’ is naturally re-
garded as the transition temperature of the pure
two-band superconductor as a whole, or 7.9'= T,
In Ref. 2, it was shown that with the existence of
interband impurity scattering in an impure two-
band superconductor, the d-band transition tem-

perature T, should be smaller than that of a pure
two-band superconductor, T4 < ng’ . On the other
hand, in I, a qualitative conclusion was reached
that the s-band transition temperature of an im-
pure two-band superconductor, T, should be
larger than that of a corresponding pure two-band
superconductor, T,s> 7. In Sec. II, we shall
show that in an impure two-band superconductor
T.s should always be equal to T,;. Once this is
shown, we can draw a conclusion that for an im-
pure two-band superconductor, even without inter-
band BCS coupling, there can only be one transition
temperature, T,, which is equal to T,y and T, .

Although the specific-heat data of niobium super-
conductors have been successfully explained in
terms of the two-band model, % the recent tunnel-
ling experiments by Hafstrom and MacVicar®
directly show the formation of distinct s pairs and
a pairs in niobium superconductors. The following
points should be noted from the Hafstrom-Mac-
Vicar experiments. Firstly, the samples mea-
sured by Hafstrom and MacVicar should be re-
garded as impure superconductors. Secondly, in
these impure superconductors, no distinct s-band
transition temperature 7T, is observed, and thus
Hafstrom and MacVicar speculated that the s-band
transition temperature 7T,, should coincide with
the d-band transition temperature T,y. (See Sec.
VI of Ref. 5.) On the basis of the present inves-
tigation, we tend to believe that, in an impure
two-band superconductor, it is essentially the
interband impurity scattering which causes the
“interband” coupling. We shall explain this point
in detail in Sec. III.

II. TRANSITION TEMPERATURE OF TWO-BAND SUPER-
CONDUCTORS CONTAINING NONMAGNETIC IMPUR-
ITIES IN THE INTRABAND BCS PHONON COUPLING

LIMIT

In the intraband phonon coupling limit, g4 =0,
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the Hamiltonian of an impure two-band supercon-
ductor is given by
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where V,(%-R,) and V,(%X - R,) are the intraband
impurity scattering potentials for an impurity lo-
cated at position R;, and V4 (X - R,) is the inter-
band impurity scattering potential. The Green’s
functions for the two bands were obtained in I:
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where Z, (5i@y,), Z; (Eidy,), By, and A,, are re-
lated to the corresponding quantities z, Eiw,), A,
and 4; of a pure two-band superconductor by the
following:
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where T4 is the intraband relaxation time for the
s(d) band, and 74, the interband relaxation time
for the s~d (d - s) processes. Since N;(0)>> N,(0),
if all the impurity scattering potentials are assumed
to be of the same order in magnitude, we have
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()< ()
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This inequality shall often be used to simplify
various calculations. Its physical meaning is the
following. Because of the larger density of states
at the d-band Fermi surface, the s—-d impurity
scattering processes are more favorable than the
d - s impurity scattering processes; and the d-
band electrons tend to be scattered within the d
band. Therefore, the interband impurity scattering
would influence more the physical properties of the
s band than those of the d band.
Based on the above arguments, we can write
the first-order approximation for Eqs. (6)-(9) as

Dy o w.,+217d ﬁﬁwr , (11)
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Under this approximation, we have

_ The second-order approximation for &, and
Ay, is particularly important, as we shall use it
to determine the d-band transition temperature
T,;. In the temperature region very close to T,
(T> T!?), we have A,=0. Therefore, we have
the following second- order approximation:
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[Some subscripts in Eq. (4) of Ref. 2 have been
corrected.] When the impurity density is suffi-
ciently low, we obtain (27,,)"! < |w,| for any in-
teger v [since w, =~ 1(2v+1)T,, in this temperature
region). (27,,4,)"! in Eq. (18) is actually a small
quantity as compared with w,/A;. As shown in I,
the d-band transition temperature is obtained from
the following equation by taking a limit, 7= T, :
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ORDER PARAMETERS

FIG. 1. Effective order parameters for an impure
two-band superconductor (dashed curves) plotted against
temperature. The order parameters for a corresponding
pure two-band superconductor (solid curves) are also
plotted for comparison. For an impure two-band super-
conductor, there can only be one transition temperature,
T.. (The d-band effective order parameter should devi-
ate very little from that o1 a pure two-band supercon-
ductor.)
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[In I, we apply the first-order approximation, Eq.
(15), and thus we only reach a crude result 7,
=T.] Now, with the second-order approximation,
Eq. (18), we obtain

In T 21T §\
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where ¥(x) is the digamma function. For low im-
purity density, (27;,)"1< T,,;, we have
Toy = T ~ m(2749)" (21)

That is, the d-band transition temperature of a
two-band superconductor is lowered by the inter-
band impurity scattering, even though such a lower-
ing is experimentally found to be very small in
general.

In I, we have only shown qualitatively that the
s-band transition temperature should be raised by
the interband impurity scattering. Now, let us
look into Eq. (12) in the temperature region T
> T, In this temperature region, A, is identical
to zero (note that A, is the s-band order parameter
of a two-band superconductor in the absence of
impurities), and thus we have

A

A
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Since Z&,,,, is finite until temperature reaches T,
[from Eq. (22)], we notice that A, would also re-
main finite until temperature reaches T.,. Thus,

we must have T, and T, identical. It should be

mentioned that with Eq. (I 69) alone, we cannot
reach this result; as a matter of fact we can only
reach the qualitative result just mentioned.

It should be noticed that in the temperature re-
gion T < TST, we generally have &, < A,. It
is for this reason that to investigate various phy-
sical properties of the impure two-band supercon-
ductors, one can nearly let Zs,, = 0 in this temper-
ature region.*® (In Ref. 7, T, , should be regarded
as ng’, according to the notations of the present
paper. )

In Fig. 1, the effective s-band and d-band order
parameters of an impure two-band superconductor
are plotted in comparison with the s-band and d-
band order parameters of a corresponding pure
two-band superconductor.

111. DISCUSSION

The behavior of the effective order parameters
of an impure two-band superconductor shown in
Fig. 1 strongly reminds us of the behavior of the
order parameters in Fig. 2 of an article by Suhl,
Matthias, and Walker (SMW), ® in which the inter-
band phonon-exchange interaction in a pure two-
band superconductor is considered. In the SMW
case, instead of our interaction Hamiltonian due to
impurity scattering, Eq. (3), the interband phonon-
exchange Hamiltonian, is considered. In the X
space, this SMW Hamiltonian can be written as

Coxan= — Vg J d°x [V F)U], )b, R)er (R)
+ PG )Yy @) B)]

In Fig. 2 of SMW, A and A&, are plotted under the
condition V% <<g.g,. (Our g, and g, are, respec-
tively, Vs and V, of SMW.) It is noted that when
V4 is finite, the two bands also share a common
transition temperature T, (though in the SMW case,
T,=TY). Inour Fig. 2, the SMW interband
phonon-exchange perturbing process caused by the
first term on the right-hand side of Eq. (23) is
plotted in the momentum space. The wiggly line
denotes the interband phonon-exchange interaction.

(23)

FIG. 2. SMW interband phonon-exchange perturbing
process. The wiggly line is to indicate the phonon-ex-
change interaction.
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FIG. 3. Dyson equation for the off-diagonal Green’s
function, F (D, Z,). The first diagram on the right-hand
side is the bare off-diagonal Green’s function, F.(5, Z,),
the second diagram is due to intraband impurity scatter-
ing, and the third diagram is due to interband impurity
scattering.

It is interesting that in the case of impurity
scattering, one always treats 3C;;;, Eq. (3), in
terms of the second-order Born approximation.

As a matter of fact, an interband impurity scatter-
ing perturbing process, similar to the interband
phonon-exchange perturbing process, has already
been included in the off-diagonal elements of the
2X 2 matrix Green’s functions:

Fo(D,t=1t")==i(TC43, () C4, 5" , (24)

Fao(B, t=t")==i(TCy5:(t) Cq,5:(t")) (25)

where C, 3 is the destruction operator for an s
electron with momentum P and spin up. In Fig. 3,
we give the Dyson equation for F (P, z,) in terms
of Feynman diagrams, according to AGD. ° [As

a matter of fact, this is the method we used in I
to obtain Eqs. (7) and (9).] On the right-hand side
of the equation, only the essential diagrams are
explicitly shown. The first diagram is just the
bare Green’s function, F9(P, z,), the second dia-
gram is due to intraband impurity scattering, and
the third diagram is due to interband impurity
scattering. It is in the third diagram that we
notice the elementary interband impurity scatter-
ing perturbing process, which we plot separately
in Fig. 4.

Comparing Figs. 2 and 4, we notice the similar-
ity between the SMW interband phonon-exchange
perturbing process and the present interband im-
purity scattering perturbing process. In both
processes, a pair of s electrons with opposite spins
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and momenta are converted to a pair of d electrons
with opposite spins and momenta. Actually,
owing to this similarity alone, we could already
conclude that there can only be one transition tem-
perature associated with an impure two-band super-
conductor. Indeed, in Ref. 8, we point out that
these two perturbing processes compete with each
other in two-band superconductors. In a sufficiently
dirty two-band superconductor, it is likely that
the interband impurity scattering perturbing pro-
cess would become more important than the SMW
interband phonon-exchange perturbing process.

In Fig. 2 of a recent paper by Tang, !! 7, and
T.4 for an impure two-band superconductor are
treated as being unequal. (It should be pointed
out that Tang did not show mathematically that
T.s* Toq.) This is clearly incorrect. Tang’s
mistake can further be traced back to his Eq. (43).
Tang assumes that one can apply the one-band
results

wv""mvwva A-.nwVA (26)

(which are valid in converting a pure one-band
superconductor to an impure one-band supercon-
ductor), to each of the two bands of a two-band
superconductor. In view of Egqs. (6)-(9), his
assumption is obviously incorrect. It should be
emphasized that in I, the present author only draws
a qualitative conclusion that “the interbapd impurity
scattering leads to an enhancement of the s-band
pair formation and thus leads to an s-band tran-
sition temperature which is higher than that of the
corresponding pure two-band superconductor” (see
p. 472 of I), and does not make a definite state-
ment about the question whether T, and T, should
be equal. Therefore, Tang’s belief that T,, and
T.4 are not equal has nothing to do with I.

As pointed out earlier in Sec. I, the two-band
model, with only intraband phonon coupling con-
sidered, has successfully been used to analyze the
specific-heat data of impure superconducting
transition metals. ®* In Ref. 4, it is noted that
the s-band order parameter obeys

p't
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FIG. 4. Interband impurity scattering perturbing pro-
cess involved in the third diagram in the expansion of
Fig. 3. The similarity between Figs. 2 and 4 should be
noted.



(N

Ay~ + (274! for T> 0, (27)

upon introducing impurities into a two-band super-
conductor. It is the interband impurity scattering
which causes the decrease of the s-band specific
heat at low temperatures. The change in A due
to impurity scattering in this temperature region
is clearly indicated in Fig. 1. The tunneling ex-
periments by Hafstrom and MacVicar® further
support the conclusion that there is only one tran-
sition temperature associated with an impure two-
band superconductor.

Finally, we remark that it is found experimen-
tally that the transition temperature of niobium,
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T,, is not sensitive to the amount of impurities
present. This can be partly explained by the fact
that the lowering of the transition temperature due
to the presence of impurity scattering as shown by
Eq. (21) is proportional to (2745)"!, which is pro-
portional to the small s-band density of states at
the Fermi surface, N,(0). Thus, the illustration
of the lowering of the transition temperature T,
from T,f,;” due to the presence of impurities in Fig.
1 should be regarded as qualitative. Further, in
the present investigation, we have not taken into
account the possible contribution of phonon scat-
tering which might be important for niobium with
a transition temperature of the order of 10 °K.
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The usual Heisenberg Hamiltonian with bilinear exchange —2J §, ‘52 has been extended to
include a biquadratic term — 2aJ(S,* S,)?, with an adjustable parameter @. A method equiva-
lent to constant coupling was employed to calculate the effect of the biquadratic exchange
term on the Curie temperature, magnetization, susceptibility, specific heat, and entropy for
lattices with spin-1 atoms. As @ goes from 0 to 1, the Curie temperature falls by a factor
2 to 3, while the asymptotic Curie temperature is reduced by the factor 2. The magnetization
rises much more rapidly below T¢, and the specific heat has a peak and discontinuity several
times higher for @ =1. The curvature of the inverse susceptibility increases with @, as does

the entropy change taking place above T¢.

I. INTRODUCTION

We v}ill consider the Hamiltonian

= —2J[§1‘ §2+ a(§1- §2)2] —“H(SI'+SZI) ’ (1)

where J is the Heisenberg exchange integral be-
tween neighboring spins S; and S,, with magnetic
moments uS, parallel to an effective (applied plus
internal) field H.

For a=0, this is the same as the two-particle
Hamiltonian of the form employed by Kasteleijn
and van Kranendonk® in the constant-coupling ap-
proach. For a=1, it is the same as that used by
Allan and Betts® to investigate the effect of biqua -

dratic exchange onthe Curie temperature by means
of a high-temperature expansion in powers of re-
ciprocal temperature.

For a small and negative, Joseph® also used this
Hamiltonian for a high-temperature match of sus-
ceptibility data for KMnF;. The need for a small
negative biquadratic exchange term was first
pointed out by Harris and Owen* and Rodbell et al.’
to explain their data on paramagnetic resonance of
Mn pairs in MgO. A theoretical basis for the exis-
tence of such a term was established by calcula-
tions by Anderson® and Huang and Orbach’ of the

superexchange interaction in the arrangement Mn-
O-Mn.



